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Quantum information processing, Science of—The theoretical, experimental and
technological areas covering the use of quantum mechanics for communication and
computation
—Kluwer Encyclopedia of Mathematics, Supplement II

Research conducted in the last few decades has established that quantum informa-
tion, or information based on quantum mechanics, has capabilities that exceed
those of traditional “classical” information. For example, in communication, quan-

tum information enables quantum cryptography, which is a method for communicating in
secret. Secrecy is guaranteed because eavesdropping attempts necessarily disturb the
exchanged quantum information without revealing the content of the communication. 
In computation, quantum information enables efficient simulation of quantum physics, a
task for which general-purpose, efficient, classical algorithms are not known to exist.
Quantum information also leads to efficient algorithms for factoring large numbers, which
is believed to be difficult for classical computers. An efficient factoring algorithm would
break the security of commonly used public-key cryptographic codes used for authenticat-
ing and securing Internet communications. Yet another application of quantum informa-
tion improves the efficiency with which unstructured search problems can be solved.
Quantum unstructured search may make it possible to solve significantly larger instances
of optimization problems, such as the scheduling and traveling salesman problems. 

Because of the capabilities of quantum information, the science of quantum informa-
tion processing is now a prospering, interdisciplinary field focused on better understand-
ing the possibilities and limitations of the underlying theory, on developing new
applications of quantum information, and on physically realizing controllable quantum
devices. The purpose of this primer is to provide an elementary introduction to quantum
information processing (see Part II), and then to briefly explain how we hope to exploit
the advantages of quantum information (see Part III). These two sections can be read
independently. For reference, we have included a glossary of the main terms of quantum
information (see page 33).

When we use the word “information,” we generally think of the things we can talk
about, broadcast, write down, or otherwise record. Such records can exist in many
forms, such as sound waves, electrical signals in a telephone wire, characters on paper,
pit patterns on an optical disk, or magnetization on a computer hard disk. A crucial
property of information is that it is fungible: It can be represented in many different
physical forms and easily converted from one form to another without changing its
meaning. In this sense, information is independent of the devices used to represent it but
requires at least one physical representation in order to be useful. 

We call the familiar information stored in today’s computers classical or deterministic
to distinguish it from quantum information. It is no accident that classical information is
the basis of all human knowledge. Any information passing through our senses is best
modeled by classical discrete or continuous information. Therefore, when considering 
any other kind of information, we need to provide a method for extracting classically
meaningful information. We begin by recalling the basic ideas of classical information in
a way that illustrates the general procedure for building an information-processing theory. 
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Part I: Classical Information

The basic unit of classical deterministic information is the bit, an abstract entity or
system that can be in one of the two states symbolized by � and �. At this point, the
symbols for the two states have no numeric meaning. That is why we have used a font
different from that for the numbers 0 and 1. By making a clear distinction between the
bit and its states, we emphasize that a bit should be physically realized as a system or
device whose states correspond to the ideal bit’s states. For example, if you are reading
this primer on paper, the system used to realize a bit is a reserved location on the sur-
face, and the state depends on the pattern of ink (� or �) in that location. In a computer,
the device realizing a bit can be a combination of transistors and other integrated-circuit
elements with the state of the bit determined by the distribution of charge. 

In order to make use of information, it must be possible to manipulate (or process)
the states of information units. The elementary operations that can be used for this pur-
pose are called gates. Two one-bit gates are the not and reset gates. Applying the not
gate to a bit has the effect of flipping the state of the bit. For example, if the initial state
of the bit is �, then the state after applying not is not (�) = �. We can present the effect
of the gate in the following form:

Initial State Final State

� → not (�) = �  , and 

� → not (�) = �  . (1)

The reset gate sets the state to � regardless of the input:

Initial State Final State

� → reset (�) = � , and 

� → reset (�) = �  . (2)

By applying a combination of not and reset gates, one can transform the state of a 
bit in every possible way. 

Information units can be combined to represent more information. Bits are 
typically combined into sequences. The states of such a sequence are symbolized by
strings of state symbols for the constituent bits. For example, a two-bit sequence can
be in one of the following four states: ��, ��, ��, and ��. The different bits are distin-
guished by their position in the sequence. 

The one-bit gates can be applied to any bit in a sequence. For example, the not
gate applied to the second bit of a three-bit sequence in the state ��� changes the 
state to ���. 

One-bit gates act independently on each bit. To compute with multiple bits, we
need gates whose action can correlate the states of two or more bits. One such gate is
the nand (“not and”) gate, which acts on two bits in a bit sequence. Its effect is to set
the state of the first bit to � if both the first and the second bit are �; otherwise, it sets
it to �. Here is what happens when nand is applied to two consecutive bits:
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Initial State Final State

�� → nand (��) = �� ,

�� → nand (��) = �� ,

�� → nand (��) = �� , and

�� → nand (��) = �� . (3)

The nand gate can be applied to any two bits in a sequence. For example, it can be
applied to the fourth and second bits (in this order) of four bits, in which case the
initial state ���� is transformed to ����, setting the fourth bit to �. 

Other operations on bit sequences include adding a new bit to the beginning
(prepend) or end (append) of a sequence. The new bit is always initialized to �� It is
also possible to discard the first or last bit regardless of its state. Versions of these
operations that are conditional on the state of another bit may also be used. An 
example is the conditional append operation: “If the kth bit is in the state �, then
append a bit.”

The gates just introduced suffice for implementing arbitrary state transformations
of a given bit sequence. Instructions for applying gates in a particular order are
called a circuit. An important part of investigations in information processing is to
determine the minimum resources required to perform information-processing tasks.
For a given circuit, the two primary resources are the number of gates and the total
number of bits used. The circuit complexity of a desired transformation is the mini-
mum number of gates needed to implement it. 

The model of computation defined by the ability to apply gates in a fixed
sequence is called the circuit model. Classical computation extends the circuit 
model by providing a means for repeating blocks of instructions indefinitely or until
a desired condition is achieved. In principle, it is possible to conceive of a general-
purpose computer as a device that repeatedly applies the same circuit to the 
beginnings of several bit sequences. In this article, we take for granted a traditional
programmable computer based on classical information. Thus, a quantum algorithm
is a program written for such a computer with additional instructions for applying
gates to quantum information. The computational power of this model is equivalent
to that of other general-purpose models of quantum computation, such as quantum
Turing machines (Yao 1993). 

For an introduction to algorithms and their analysis, refer to Thomas Cormen et
al. (1990). Christos Papadimitriou wrote (1994) a useful textbook on computational
complexity with an introduction to classical computation and computational
machine models.
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Part II: Quantum Information

The foundations of an information-processing theory can be constructed by the pro-
cedure we followed in the previous section:

1. Define the basic unit of information.
2. Give the means for processing one unit.
3. Describe how multiple units can be combined.
4. Give the means for processing multiple units.
5. Show how to convert the content of any of the extant units to classical information.

Note that the last step was not required for classical information processing.
In this section, we follow the general procedure for defining an information-processing

theory to introduce quantum information processing. A simple example that exhibits the
advantages of quantum information is given in the section “The Parity Problem” on page
21. A version of the quantum factoring algorithm is described immediately following this
article in “From Factoring to Phase Estimation” on page 38.

The Quantum Bit

The fundamental resource and basic unit of quantum information is the quantum bit
(qubit), which behaves like a classical bit enhanced by the superposition principle (see
discussion in this section). From a physical point of view, a qubit is represented by an
ideal two-state quantum system. Examples of such systems include photons (vertical and
horizontal polarization), electrons and other spin-1/2 systems (spin-up and -down), and
systems defined by two energy levels of atoms or ions. From the beginning, the two-
state system played a central role in studies of quantum mechanics. It is the simplest
quantum system, and in principle, all other quantum systems can be modeled in the state
space of collections of qubits. 

From the information-processing point of view, a qubit’s state space contains the two
“logical,” or computational, states |�〉 and |�〉. The so-called “ket” notation for these
states was introduced by Paul Dirac, and its variations are widely used in quantum
physics. One can think of the pair of symbols | and 〉 as representing the qubit system.
Their content specifies a state for the system. In this context, � and � are system-
independent state labels. When, say, � is placed within the ket, the resulting expression
|�〉 represents the corresponding state of a specific qubit. 

The initial state of a qubit is always one of the logical states. Using operations to be
introduced later, we can obtain states that are superpositions of the logical states.
Superpositions can be expressed as sums α|�〉 + β|�〉 over the logical states with com-
plex coefficients. The complex numbers α and β are the amplitudes of the superposition.
The existence of such superpositions of distinguishable states of quantum systems is one
of the basic tenets of quantum theory and is called the superposition principle. Another
way of writing a general superposition is as a vector:

(4)

where the two-sided arrow is used to denote the correspondence between expressions
that mean the same thing. 

The qubit states that are superpositions of the logical states are called pure states:
A superposition α|�〉 + β|�〉 is a pure state if the corresponding vector has length 1, that

α β
α
β

� �+ ↔






 ,
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is, |α |2 + |β |2 = 1. Such a superposition or vector is said to be normalized. (For a com-
plex number given by γ = x + iy, one can evaluate |γ |2 = x2 + y2. Here, x and y are the
real and imaginary part of γ , and the symbol i is a square root of –1, that is, i2 = –1. The
conjugate of γ is γ = x – iy. Thus, | γ |2 = γγ). Here are a few examples of states given in
both the ket and vector notation:

(5)

(6)and

(7)   

The state |ψ3〉 is obtained from |ψ2〉 by multiplication with i. It turns out that two
states cannot be distinguished if one of them is obtained by multiplying the other by a
phase eiθ. Note how we have generalized the ket notation by introducing expressions
such as |ψ〉 for arbitrary states. 

The superposition principle for quantum information means that we can have states
that are sums of logical states with complex coefficients. There is another, more familiar
type of information, whose states are combinations of logical states. The basic unit of
this type of information is the probabilistic bit (pbit). Intuitively, a pbit can be thought of
as representing the as-yet-undetermined outcome of a coin flip. Since we need the idea
of probability to understand how quantum information converts to classical information,
we briefly introduce pbits. 

A pbit’s state space is a probability distribution over the states of a bit. One very
explicit way to symbolize such a state is by using the expression {p:�, (1 – p):�}, which
means that the pbit has probability p of being � and 1 – p of being �. Thus, a state of a
pbit is a probabilistic combination of the two logical states, where the coefficients are
nonnegative real numbers summing to 1. A typical example is the unbiased coin in the
process of being flipped. If tail and head represent � and �, respectively, the coin’s state
is {1/2:�, 1/2:�}. After the outcome of the flip is known, the state collapses to one of the
logical states � and �. In this way, a pbit is converted to a classical bit. If the pbit is
probabilistically correlated with other pbits, the collapse associated with learning the
pbit’s logical state changes the overall probability distribution by a process called 
conditioning on the outcome. 

A consequence of the conditioning process is that we never actually “see” a 
probability distribution. We only see classical deterministic bit states. According to the
frequency interpretation of probabilities, the original probability distribution can only 
be inferred after one looks at many independent pbits in the same state {p:�, (1 – p):�}:
In the limit of infinitely many pbits, p is given by the fraction of pbits seen to be in the
state o. As we will explain, we can never see a general qubit state either. For qubits,
there is a process analogous to conditioning. It is called measurement and converts qubit
states to classical information. 

Information processing with pbits has many advantages over deterministic information
processing with bits. One advantage is that algorithms are often much easier to design and
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analyze if they are probabilistic. Examples include many optimization and physics simu-
lation algorithms. In some cases, the best available probabilistic algorithm is more effi-
cient than any known deterministic algorithm. An example is an algorithm for determin-
ing whether a number is prime or not. It is not known whether every probabilistic algo-
rithm can be derandomized efficiently. There are important communication problems
that can be solved probabilistically but not deterministically. For a survey of these algo-
rithms, see Rajiv Gupta (1994a). 

What is the difference between bits, pbits, and qubits? One way to visualize the 
difference and see the enrichment provided by pbits and qubits is shown in Figure 1. 

Figure 1. Comparing State Spaces of Different Information Units
The states of a bit correspond to two points. The states of a pbit can be thought of as convex
combinations of a bit’s states and therefore can be visualized as lying on the line connecting
the two bit states. A qubit’s pure states correspond to the surface of the unit sphere in three
dimensions, where the logical states correspond to the poles. This representation of qubit
states is called the Bloch sphere. The explicit correspondence is discussed at the end of the
section “Mixtures and Density Operators.” Also refer to the definition and use of the Bloch
sphere in the article “NMR and Quantum Information Processing” on page 226. There, the cor-
respondence between the pure states and the sphere is physically motivated and comes
from a way of viewing a spin-1/2 system as a small quantum magnet. Intuitively, a state is
determined by the direction of the north pole of the magnet.

Processing One Qubit

The quantum version of the not gate for bits exchanges the two logical states; that is,
using ket notation,

not(α|�〉+ β|�〉) = α|�〉 + β|�〉 = β|�〉 + α|�〉 . (8)

In vector notation, this equation becomes
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Pbit Qubit

|�〉

11

State: � or � {p:�, (1 – p):�} α|�〉 + β|�〉
|α|2 + |β|2 = 1

Bit

00

|�〉



(9)

Another way of expressing the effect of not is by multiplying the vector by a matrix rep-
resenting not,

(10)

so that we can identify the action of not with the matrix

An even simpler gate is the one that does nothing. We call it the noop gate, and its
matrix form is the identity matrix, as shown in the following equation:

(11)

The noop and not gates are reversible. In other words, we can undo their actions by
applying other gates. For example, the action of the not gate can be undone by another 
not gate. The action of every reversible quantum gate can be represented by matrix multi-
plication, where the matrix has the additional property of preserving vector lengths. Such
matrices are called unitary and are characterized by the equation A†A = 11, where A† is 
the conjugate transpose of A and 11 is the identity matrix. (The conjugate transpose of a
matrix is computed by flipping that matrix across the main diagonal and conjugating 
the complex numbers). For gates represented by a matrices, the unitarity condition is 
necessary and sufficient for ensuring that pure states get mapped to pure states. 

Because qubit states can be represented as points on a sphere, reversible one-qubit gates
can be thought of as rotations of the Bloch sphere. This is why such quantum gates are
often called rotations. As explained in detail on page 232 in the article “NMR and
Quantum Information Processing”, rotations around the x-, y-, and z-axis are in a sense
generated by the three Pauli matrices

(12)

each of which represents a one-qubit gate. For example, a rotation around the x-axis by
an angle φ is given by e–iσxφ/2 = cos(φ/2)11 – i sin(φ/2)σx. To obtain this identity, one can
use the power series for eA, eA = ∑

k=0

∞
(1/k!)Ak, and exploit the fact that σ2

x = 11 to simplify

the expression. Here are some gates that can be defined with the help of rotations:
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i

i
=







=

−





=

−






0 1

1 0

0

0

1 0

0 1
 ,   ,    ,and

noop 
α
β

α
β

α
β







=













=







   .

1 0

0 1

σ x =










0 1

1 0
 .

not 
α
β

α
β

β
α







=













=







   ,

0 1

1 0

not 
α
β

β
α







=







  .

Number 27  2002  Los Alamos Science  9

Quantum Information Processing



90° x-rotation:

90° y-rotation:

φ z-rotation:

Hadamard gate: (13)

The rotation gates often show up in controlling spins or ions with radio-frequency pulses
or lasers. The Hadamard gate is used primarily by quantum programmers. It can be
expressed as a product of a 90° y-rotation and σz. 

To check directly that the rotation gates are reversible, one can determine their
inverses. In this case and as expected, the inverse of a rotation is the rotation around the
same axis in the opposite direction. For example, the inverses of the roty90° and rotzφ
gates are given by

(14)

Another useful property of the rotation gates is that the angles add when rotations are
applied around the same axis. For example, rotzφrotzθ = rotzφ+θ .

The Bra-Ket Notation for Logic Gates. The ket notation can be extended so that we
can write gates in a compact form that readily generalizes to multiple qubits. To do so,
we have to introduce expressions such as 〈ψ| = α〈�| + β〈�|. This is called the “bra”
notation. The terminology comes from the term “bracket:” The bra is the left, and the
ket is the right part of a matched pair of brackets. From the vector point of view, 〈ψ|
corresponds to the row vector (α, β). Note that a column vector multiplied by a row vec-
tor yields a matrix. In the bra-ket notation, this corresponds to multiplying a ket |ψ〉 by a
bra 〈φ|, written as |ψ〉〈φ|. Since this represents an operator on states, we expect to be able
to compute the effect of |ψ〉〈φ| on a state |ϕ〉 by forming the product. To be able to evalu-
ate such products with one-qubit bras and kets, we need the following two rules: distrib-
utivity and inner-product evaluation.

Distributivity
You can rewrite sums and products using distributivity. For example,

(15)

Observe that we can combine the amplitudes of terms, but we cannot rearrange the order
of the bras and kets in a product. 
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Inner-Product Evaluation
The product of a logical bra and a logical ket is evaluated according to the identities

(16)

It follows that for logical states, if a bra multiplies a ket, the result cancels unless the
states match, in which case the answer is 1. Applying inner-product evaluation to
Equation (15) results in 

(17)

To simplify the notation, we can omit one of the two vertical bars in products such as
〈a||b〉 and write 〈a|b〉. 

To understand inner-product evaluation, think of the expressions as products of row
and column vectors. For example,

〈�|�〉 ↔
(1  0)

(18)

That is, as vectors, the two states |�〉 and |�〉 are orthogonal. In general, if |φ〉 and 
|ψ〉 are states, then 〈φ|ψ〉 is the inner product, or “overlap,” of the two states. In the
expression for the overlap, we compute 〈φ| from |φ〉 = α|�〉 + β|�〉 by conjugating 
the coefficients and converting the logical kets to bras: 〈φ| = α〈�| + β〈�|. In the vector
representation, this is the conjugate transpose of the column vector for |φ〉, so the inner
product agrees with the usual one. Two states are orthogonal if their overlap is zero. 
We write |φ〉† = 〈φ| and 〈φ|† = |φ〉. 

Every linear operator on states can be expressed with the bra-ket notation. For exam-
ple, the bra-ket expression for the noop gate is noop = |�〉〈�| + |�〉〈�|. To apply noop to
a qubit, you multiply its state on the left by the bra-ket expression 

(19)

One way to think about an operator such as |a〉〈b| is to notice that, when it is used to
operate on a ket expression, the 〈b| picks out the matching kets in the state, which are
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then changed to |a〉. For example, we can write the not operation as not = |�〉〈�| + |�〉〈�|.
The coefficients of the |a〉〈b| in a bra-ket representation of a gate correspond to

matrix entries in the matrix representation. The relationship is defined by

(20)

Two Quantum Bits

Some states of two quantum bits can be symbolized by the juxtaposition (or multipli-
cation) of the states of each quantum bit. In particular, the four logical states |�〉|�〉,
|�〉|�〉, |�〉|�〉, and |�〉|�〉 are acceptable pure states for two quantum bits. In these expres-
sions, we have distinguished the qubits by position (first or second). It is easier to
manipulate state expressions if we explicitly name the qubits, say, A and B. We can then
distinguish the kets by writing, for example, |ψ〉A for a state of qubit A. Now, the state
|�〉|�〉 can be written with explicit qubit names (or labels) as

|�〉A |�〉B = |�〉B |�〉A = |��〉AB = |��〉BA . (21)

Having explicit labels allows us to unambiguously reorder the states in a product of
states belonging to different qubits. We say that kets for different qubits “commute.”

So far, we have seen four states of two qubits, which are the logical states that corre-
spond to the states of two bits. As in the case of one qubit, we can use the superposition
principle to get all the other pure states. Each state of two qubits is therefore of the form

α|��〉AB + β|��〉AB + γ|��〉AB + δ|��〉AB , (22)

where α, β, γ, and δ are complex numbers. Again, there is a column vector form for the
state,

(23)

and this vector has to be of unit length, that is, |α|2 + |β|2 + |γ|2 + |δ|2 = 1. When using
the vector form for qubit states, one has to be careful about the convention used for
ordering the coefficients. 

Other examples of two-qubit states in ket notation are the following:

α
β
γ
δ
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(24)

The first two of these states have the special property that they can be written as a product
|φ1〉A|φ2〉B of a state of qubit A and a state of qubit B. The second expression for |ψ2〉 shows
that the product decomposition is not always easy to see. Such states are called product
states. The last two states, |ψ3〉AB and |ψ4〉AB, are two of the famous Bell states. They have
no such representation as a product of independent states of each qubit. They are said to be
entangled because they contain a uniquely quantum correlation between the two qubit 
systems. Pbits can also have correlations that cannot be decomposed into product states,
but the entangled states have additional properties that make them very useful. For example,
if Alice and Bob each have one of the qubits that together are in the state |ψ�〉AB, they can
use them to create a secret bit for encrypting their digital communications (see the article
“Quantum State Entanglement” on page 52). 

Processing Two Qubits

The simplest way of modifying the state of two qubits is to apply one of the
one-qubit gates. If the gates are expressed in the bra-ket notation, all we need to do is
add qubit labels so that we know which qubit each bra or ket belongs to. For example,
the not gate for qubit B is written as

not(B) = |�〉B
B〈�| + |�〉B

B〈�| . (25)

The labels for bra expressions occur as left superscripts. To apply expressions like this
to states, we need one more rule, namely, commutation. 

Commutation 
Kets and bras with different labels can be interchanged in products (they commute).

This property is demonstrated by the following example:

(26)
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Note that we cannot merge the two vertical bars in expressions such as B〈�||�〉A because
the two terms belong to different qubits. The bars can only be merged when the expres-
sion is an inner product, which requires that the two terms belong to the same qubit. 

With the rules for bra-ket expressions in hand, we can apply the not gate to one of
our Bell states to see how it acts:

(27)

The effect of the gate was to flip the state symbols for qubit B, which results in another
Bell state. 

The gate not(B) can also be written as a 4 × 4 matrix acting on the vector representa-
tion of a two-qubit state. However, the relationship between this matrix and the
one-qubit matrix is not as obvious as for the bra-ket expression. The matrix is

(28)

which swaps the top two and bottom two entries of a state vector. 
One way to see the relationship between the one- and two-qubit representations of

the gate not(B) is to notice that because the noop gate acts as the identity and because
we can act on different qubits independently, noop(A)not(B) ≅ not(B). The matrix for
not(B) can be expressed as a Kronecker product (⊗) of the matrices for noop and not:

not( )  ,B =



















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
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(29)

The Kronecker product of two matrices expands the first matrix by multiplying each
entry by the second matrix. A disadvantage of the matrix representation of quantum
gates is that it depends on the number and order of the qubits. However, it is often easier
to visualize what the operation does by writing down the corresponding matrix. 

One cannot do much with one-bit classical gates. Similarly, the utility of one-qubit
gates is limited. In particular, it is not possible to obtain a Bell state starting from
|��〉AB or any other product state. We therefore need to introduce at least one two-qubit
gate not expressible as the product of two one-qubit gates. The best-known such gate is
the controlled-not (cnot) gate. Its action can be described by the statement, “if the first
bit is �, flip the second bit; otherwise, do nothing.” The bra-ket and matrix representa-
tions for this action are

(30)

The cnot gate is reversible because its action is undone if a second cnot is applied.
This outcome is easy to see by computing the square of the matrix for cnot, which
yields the identity matrix. As an exercise in manipulating bras and kets, let us calculate
the product of two cnot gates by using the bra-ket representation:

(31)
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The first step is to expand this expression by multiplying out. Expressions such as
|�〉A

A〈�||�〉A
A〈�| cancel because of the inner-product evaluation rule A〈�|�〉A = 0. One can

also reorder bras and kets with different labels and rewrite |�〉A
A〈�||�〉A

A〈�| = |�〉A
A〈�|

to get 

(32)

Here we used the fact that, when the bra-ket expression for noop is applied to the ket
expression for a state, it acts the same as (here denoted by the symbol ≅) multiplication
by the number 1. 

Using Many Quantum Bits

To use more than two, say, five qubits, we can just start with the state
|�〉A|�〉B|�〉C|�〉D|�〉E and apply gates to any one or two of these qubits. For example,
cnot(DB) applies the cnot operation from qubit D to qubit B. Note that the order of D
and B in the label for the cnot operation matters. In the bra-ket notation, we simply
multiply the state with the bra-ket form of cnot(DB) from the left. One can express
everything in terms of matrices and vectors, but now the vectors have length 25 = 32,
and the Kronecker product expression for cnot(DB) requires some reordering to enable
inserting the operation so as to act on the intended qubits. Nevertheless, to analyze the
properties of all reversible (that is, unitary) operations on these qubits, it is helpful to
think of the matrices because a lot of useful properties about unitary matrices are
known. One important result from this analysis is that every matrix that represents a
reversible operation on quantum states can be expressed as a product of the one- and
two-qubit gates introduced so far. We say that this set of gates is universal. 

For general-purpose computation, it is necessary to have access to arbitrarily many
qubits. Instead of assuming that there are infinitely many from the start, it is convenient
to have an operation to add a new qubit, namely, add. To add a new qubit labeled X in
the state |�〉X, apply add(X) to the current state. This operation can only be used if there
is not already a qubit labeled X. To implement the add(X) operation in the bra-ket nota-
tion, we multiply the ket expression for the current state by |�〉X.
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Qubit Measurements

In order to classically access information about the state of qubits, we use the meas-
urement operation meas. This is an intrinsically probabilistic process that can be applied
to any extant qubit. For information processing, one can think of meas as a subroutine
or function whose output is either � or �. The output is called the measurement 
outcome. The probabilities of the measurement outcomes are determined by the 
current state. The state of the qubit being measured is collapsed to the logical state 
corresponding to the outcome. Suppose we have just one qubit, currently in the state 
|ψ〉 = α|�〉 + β|�〉. Measurement of this qubit has the effect

(33)

The classical output is given before the new state for each possible outcome. This 
measurement behavior explains why the amplitudes have to define unit length vectors:
Up to a phase, they are associated with square roots of probabilities. 

For two qubits, the process is more involved. Because of possible correlations
between the two qubits, the measurement affects the state of the other one too, similar 
to conditioning for pbits after one “looks” at one of them. As an example, consider 
the state

(34)

To figure out what happens when we measure qubit A, we first rewrite the current state
in the form α|�〉A|φ0〉B + β|�〉A|φ1〉B, where |φ0〉B and |φ1〉B are pure states for qubit B. It
is always possible to do that. For the example given in Equation (34),
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The last step required pulling out the factor of √5/3 to make sure that |φ0〉B is properly
normalized for a pure state. Now, that we have rewritten the state, the effect of measur-
ing qubit A can be given as follows:

(36)

For the example, the measurement outcome is � with probability 5/9, in which case the
state collapses to |�〉A(1/√5|�〉B + 2/√5|�〉B). The outcome is � with probability 4/9, in
which case the state collapses to |�〉A|�〉B. The probabilities add up to 1 as they should. 

The same procedure works for figuring out the effect of measuring one of any num-
ber of qubits. Say we want to measure qubit B among qubits A, B, C, D, currently in
state |ψ〉ABCD. First, rewrite the state in the form α|�〉B|φ0〉ACD + β|�〉B|φ1〉ACD, making
sure that the ACD superpositions are pure states. Then, the outcome of the measurement
is � with probability |α|2 and � with probability |β|2. The collapsed states are
|�〉B|φ0〉ACD and |�〉B|φ1〉ACD, respectively. 

Probabilities of the measurement outcomes and the new states can be calculated sys-
tematically. For example, to compute the probability and state for outcome � of 
meas(A) given the state |ψ〉AB, one can first obtain the unnormalized ket expression
|φ′0〉B = A〈�||ψ〉AB by using the rules for multiplying kets by bras. The probability is
given by p0 = B〈φ′0|φ′0〉B, and the collapsed, properly normalized pure state is

(37)

The operator P� = |�〉A
A〈�| is called a projection operator or projector for short. If we

perform the same computation for the outcome �, we find the projector P� = |�〉A
A〈�|.

The two operators satisfy Pa
2 = Pa, P†

a = Pa, and P� + P� = 11. In terms of the projec-
tors, the measurement’s effect can be written as follows:

(38)

where p0 = AB〈ψ|P�|ψ〉AB and p1 = AB〈ψ|P�|ψ〉AB. In quantum mechanics, any pair of
projectors satisfying the properties given above is associated with a potential measure-
ment whose effect can be written in the same form. This is called a binary von
Neumann, or projective, measurement. 
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Mixtures and Density Operators

The measurement operation reads out information from qubits to pbits. What if we
discard the pbit that contains the measurement outcome? The result is that the qubits are
in a probabilistic mixture of two pure states. Such mixtures are a generalization of pure
states. The obvious way to think about a mixture is that we have a probability distribu-
tion over pure quantum states. For example, after discarding the pbit and qubit A in
Equation (36), we can write the state of B as ρ = {|α|2:|φ0〉B, |β|2:|φ1〉B}, using the nota-
tion for probability distributions introduced earlier. 

Mixtures frequently form when irreversible operations are used, such as measure-
ment. Except for measurement, the quantum gates we have introduced so far are
reversible and therefore transform pure states to pure states so that no mixtures can be
formed. One of the fundamental results of reversible classical and quantum computation
is that there is no loss in power in using only reversible gates. Specifically, it is possible
to change a computation that includes irreversible operations to one that accomplishes
the same goal, has only reversible operations, and is efficient in the sense that it uses at
most polynomial additional resources. However, the cost of using only reversible opera-
tions is not negligible. In particular, for ease of programming and, more important, when
performing repetitive error-correction tasks (see the article on this subject on page 188),
the inability to discard or reset qubits can be very inconvenient. We therefore introduce
additional operations that enable resetting and discarding. 

Although resetting has a so-called thermodynamic cost (think of the heat generated
by a computer), it is actually a simple operation. The reset operation applied to qubit A
can be thought of as the result of first measuring A, then flipping A if the measurement
outcome is |�〉, and finally discarding the measurement result. Using the notation of
Equation (36), the effect on a pure state |ψ〉AB is given by

(39)

To apply reset to an arbitrary probability distribution, you apply it to each of that distri-
bution’s pure states and combine the results to form an expanded probability distribution.
The discard(A) operation is reset(A) followed by discarding qubit A. In the expression for
the state after reset(A), therefore, all the |�〉A are removed. It is an important fact that every
physically realizable quantum operation, whether reversible or not, can be expressed as a
combination of add operations, gates from the universal set, and discard operations. 

The representation of mixtures using probability distributions over pure states is
redundant. That is, many probability distributions are physically indistinguishable. A
nonredundant description of a quantum state can be obtained if density operators are
used. The density operator for the mixture ρ in Equation (39) is given by

(40)

The general rule for calculating the density operator from a probability distribution is
the following: For each pure state |φ〉 in the distribution, calculate the operators |φ〉〈φ|
and sum them weighted by their probabilities. 

ˆ  .ρ α φ φ β φ φ= +2
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2
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There is a way to apply gates to the density operators defined by states. If the gate
acts by the unitary operator U, then the effect of applying it to  ρ̂ is given by U ρ̂U†

where U† is the conjugate transpose of U. (In the bra-ket expression for U, U† is
obtained by replacing all complex numbers by their conjugates, and terms such as |φ〉〈ϕ|,
by |ϕ〉〈φ|.) 

The relationship between a qubit’s state space and a sphere can be explained in terms
of the qubit’s density operators. In matrix form, this operator is a 2 × 2 matrix, which
can be written uniquely as a sum (11 + xσx + yσy + zσz)/2. One can check that, if the
density operator |ψ〉〈ψ| for a qubit’s pure state is written as such a sum,

|ψ〉〈ψ| = (11 + xσx + yσy + zσz)/2 , (41)

then the vector (x, y, z) thus obtained is on the surface of the unit sphere in three dimen-
sions. In fact, for every vector (x, y, z) on the unit sphere, there is a unique pure state
satisfying Equation (41). Since the density operators for mixtures are arbitrary, convex
(that is, probabilistic) sums of pure states, the set of (x, y, z) thus obtained for mixtures
fills out the unit ball. The rotations introduced earlier modify the vector (x, y, z) in the
expected way, by rotation of the vector around the appropriate axis. See the article
“NMR and Quantum Information Processing” on page 232 for more details. 

Quantum Computation

The model of computation defined by the one- and two-qubit gates and the opera-
tions add, meas, and discard qubits is called the quantum network model. A sequence
of instructions for applying these operations is called a quantum network. Quantum
computation extends the network model by providing a means for repeating blocks of
instructions. Such means can be specified by a formal machine model of computation.
There are several such models of classical and quantum computers. One of the best
known is the Turing machine, which has a quantum analogue, the quantum Turing
machine. This model has its uses for formal studies of computation and complexity 
but is difficult to program. Fortunately, as mentioned in Part I, there is no loss of com-
putational power if the means for repeating instructions is provided by a classical com-
puter that can apply gates and other operations to qubits. A general quantum algorithm
is a program written for such a computer. 

There are three practical methods that can be used to write quantum networks and
algorithms. The first is to use the names for the different operations and algebraically
multiply them. The second is to draw quantum networks, which are pictorial representa-
tions of the sequence of steps in time, somewhat like flowcharts without loops. The third
is to use a generic programming language enhanced with statements for accessing and
modifying quantum bits. The first two methods work well as long as the sequence is
short and we do not use many operations that depend on measurement outcomes or
require loops. They are often used to describe subroutines of longer algorithms presented
either in words or by use of the third method. 

To see how to use the different methods and also to illustrate the power of quantum
computation, we work out a short quantum algorithm that solves the so-called parity
problem. 
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The Parity Problem. Given is a “black-box” quantum operation BB(ABC) that has
the following effect when applied to a logical basis state:

BB(ABC)|aAaB〉AB|aC〉C = |aAaB〉ΑΒ|aC ⊕ (bAaA ⊕ bBaB)〉C  , (42)

where bA and bB are 0 or 1. The actual values of bA and bB are unknown. The problem
is to determine what bA and bB are by using the black box only once. 

The terminology and definition of the operation BB(ABC) require explanation. In
computation, we say that an operation is a black box, or an “oracle,” if we have no
access whatsoever to how the operation is implemented. In a black-box problem, we are
promised that the black box implements an operation from a specified set of operations.
In the case of the parity problem, we know that the operation is to add one of four possi-
ble parities (see below). The problem is to determine that parity by using the black box
in a network. Black-box problems serve many purposes. One is to study the differences
between models of computation, just as we are about to do. In fact, black-box problems
played a crucial role in the development of quantum algorithms by providing the first
and most convincing examples of the power of quantum computers (Bernstein and
Vazirani 1993, Simon 1994). Some of these examples involve generalizations of the par-
ity problem. Another purpose of black-box problems is to enable us to focus on what
can be learned from the input/output behavior of an operation without having to analyze
its implementation. Focusing on the input/output behavior is useful because, in many
cases of interest, it is difficult to exploit knowledge of the implementation in order to
determine a desirable property of the operation. A classical example is the well-known
satisfiability problem, in which we are given a classical circuit with one output bit and
we need to determine whether there is an input for which the output is �. Instead of try-
ing to analyze the circuit, one can look for and use a general-purpose black-box search
algorithm to find the satisfying input. 

In the definition of the effect of BB(ABC), the operation ⊕ is addition modulo 2, so 
1 ⊕ 1 = 0, and all the other sums are as expected. As the state symbols have a numeric
meaning now, we will use the number font for states. To see what BB does, suppose that
bA and bB are both 1. Then BB adds (modulo 2) the parity of the logical state in AB to
the logical state of C. The parity of a logical state is 0 if the number of ls is even and 1
if it is odd. The action of BB for this example is given by

(43)
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The action of the black box is extended to superpositions by linear extension. This
means that to apply BB to a superposition of the logical states, we simply apply it to
each logical summand and add the results. Different values of bA and bB correspond to
different parities. For example, if bA = 1 and bB = 0, then the parity of the state in A is
added to the state in C. In this sense, what is added is the parity of a subset of the two
qubits AB. Thus, one way of thinking about the problem is that we wish to find out
which subset’s parity the black box is using. 

We can give an algorithm that solves the parity problem using each of the three meth-
ods for describing quantum networks. Here is an algebraic description of a solution,
qparity(ABC), given as a product of quantum gates that involves one use of the black
box. We defer the explanation of why this solution works until after we show how to
represent the algorithm pictorially, using quantum networks. 

(44)

The output of the algorithm is given by the classical outputs of the measurements of
qubit A, which yield bA, and of qubit B, which yield bB. As is conventional, in writing
products of linear operators, the order of application in Equation (44) is right to left, as
in a product of matrices applied to a column vector. This order of terms in a product is,
however, counterintuitive, particularly for operations to be performed sequentially. It is
therefore convenient to use left to right notation, as is done in describing laser or radio-
frequency pulse sequences, and to put dots between gates to indicate left to right order:

(45)

In this representation, the first operation is add(A), the second is H(A) (the Hadamard
gate on qubit A), and so on.

The algebraic specification of the algorithm as products of gates does not make it
easy to see why the algorithm works. It is also difficult to see which operations depend
on each other. Such dependencies are used to determine whether the operations can be
parallelized. Quantum networks make these tasks simpler. The quantum network for the
above sequence is shown in Figure 2. 

To understand how the quantum network illustrated in Figure 2 solves the parity
problem, we can follow the states as the network is executed from left to right, using the
indicated checkpoints. Using vector notation for the states, at checkpoint 1, the state is

(46)

where we used Kronecker product notation to denote the states of A, B, and C in this
order. In the next time step, the network involves applying Hadamard gates—see
Equation (13)—to A and B and a not gate—see Equation (9)—to C. At checkpoint 2,
this operation results in the state
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Next, a Hadamard gate is applied to C, so that at checkpoint 3, we have 

(48)

The next event involves applying the black box. To understand what happens, note that
the effect of the black box can be described as, “apply not to C if the parity according to
bA and bB of the logical state of AB is 1.” The current state of C is such that, if not is
applied, only the sign changes:

(49)

Now, AB is in a superposition of each of the logical states, and conditional on the logi-
cal state and the (hidden) parity, the sign changes. As a result, although the state of C
does not change, a phase is “kicked back” to AB. A generalization of this effect is at the
heart of Alexei Kitaev’s version of Peter Shor’s quantum factoring algorithm (see the
article “From Factoring to Phase Estimation” on page 38). At the next checkpoint, and
after some arithmetic to check which logical states change sign, we can write the state
as 

(50)

Notice that qubits A and B are in orthogonal states for different values of bA and bB. It
suffices to apply the Hadamard transform again to A and B to get 
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Figure 2. Quantum
Network for Solving the
Parity Problem 
A quantum network has a line
(horizontal in this case) for
each qubit. The line can be
thought of as the timeline for
the qubit and is shown in
blue. Each gate is drawn as a
box, circle, or other element
intercepting the lines of the
qubits it acts on. In this case,
time runs from left to right.
Each qubit’s timeline starts 
at the point where it is added.
In this example, the qubits’
timelines end when they are
measured, at which point a
classical bit (brown timeline)
containing the measurement
outcome is introduced. The
operation BB is illustrated 
as a black box. The numbers
underneath the network refer
to checkpoints used to
explain how the network
solves the parity problem.
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(51)   

Measurements of A and B now reveal the previously unknown bA and bB.
As can be seen, the visual representation of a quantum network eases the tasks of fol-

lowing what happens. This is why it is used extensively for presenting basic subroutines
and algorithms in quantum computation. A guide to the commonly used network ele-
ments is given in Table I. 

When designing or describing complicated algorithms for quantum computers, pro-
viding everything in terms of quantum networks can become difficult, particularly
when an important part of the algorithm consists of computations that are best done on
a classical computer. For example, a full description of Shor’s algorithm for factoring
integers (see the article “From Factoring to Phase Estimation” on page 38) includes a
significant amount of classical preprocessing, which determines choices made in the
quantum algorithm, and classical postprocessing, which computes a factor from the
measured result by a continued fraction algorithm. For such algorithms, one can use a
programming language similar to Pascal, BASIC, or C enhanced with statements to
access quantum bits and to apply quantum operations. For algorithm design, computer
scientists often use a semiformal language called pseudocode (Cormen et al. 1990).
With a simple extension called quantum pseudocode, the algorithm for the parity 
problem can be written as follows:

BBPARITY(BB)

Input: Access to a quantum black box BB that acts on three qubits by adding a 
parity function of the first two qubits to the third 

Output: The two bits bA and bB of the parity function

foreach i ∈ {A, B, C}

← |�〉

C: Initialize three one-qubit registers      , i = A, B, C. 

The corner bracket annotation declares ai as a quantum register. 

end

← σx

foreach i ∈ {A, B, C}

← H  

end

← BB

C: refers to the three-qubit register consisting of the       . 

foreach i ∈ {A, B}

← H
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ai

a

aC

ai

aC

ai ai

a

a ai

ai ai



bi ← meas

end

return bA, bB

end

Any classical programming language can be extended with statements to access and
manipulate quantum registers. 

Now, that we have looked at the quantum solution to the parity problem, let us 
consider the question of the least number of black-box applications required by a classical
algorithm: Each classical use of the black box can only give us one bit of information. In
particular, one use of the black box with input aAaB reveals only the parity of aAaB accord-
ing to the hidden parameters bA and bB. Each use of the black box can therefore only help
us distinguish between two subsets of the four possible parities. At least two uses of the
black box are therefore necessary. Two uses are also sufficient. To determine which of the
four parities is involved, use the black box first with input aAaB = 10 and then with input
aAaB = 01. As a result of this argument, one can consider the parity problem as a simple
example of a case in which there is a more efficient quantum algorithm than is possible
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Table I. Quantum Network Elements

Gate Names
and Their

Abbreviations
Gate

Symbols Algebraic Form Matrix Form

Add/Prepare, add
0

If applied to an existing qubit

{|�〉〈�|, |�〉〈�|}
(operator mixture)

1 0

0 0

or

0 1

0 0

































  

Measure, meas
Z b

{�:|�〉〈�|,�:|�〉〈�|} 1 0

0 0

or

0 0

0 1

































  

Not, not, σx

or

|�〉〈�| + |�〉〈�| 0 1

1 0













Hadamard, H
H e–iσyπ / 4σz 1

2

1 1

1 1−

















Phase Change, S(eiφ) ei eiφ / 2e–iσzφ / 2 1 0

0 eiφ











ai
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Table I. (Continued)

Gate Names
and Their

Abbreviations
Gate

Symbols Algebraic Form Matrix Form

y-Rotation, Yθ Y e–iσyθ / 2 cos /2 sin /2

sin /2 cos /2

θ θ

θ θ

( ) − ( )

( ) ( )









x-Rotation, Xθ X e–iσxθ / 2 cos /2 sin /2

sin /2 cos /2

θ θ

θ θ

( ) − ( )

− ( ) ( )

















i

i

Controlled not, cnot

B

A

or

|�〉A
A〈�|  +  |�〉A

A〈�|σx
(B)

e–iσz
(A)π  / 4e–i / 2(1– σz(A)) σx(B)π  / 2

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
















zz-Rotation, (ZZ)θ
Z
Z

e–iσz
(A) σz

(B) θ  / 2 e

e

e

e

i

i

i

i

−

−



















θ

θ

θ

θ

/2

/2

/2

/2

0 0 0

0 0 0

0 0 0

0 0 0

Controlled Rotation,
cUθ

B

A

U

|�〉A
A〈�|  +  |�〉A

A〈�|e–iσU
(B)  θ   /  2 1 0 0 0

0 1 0 0

0 0

0 0

U /2e i−































σ θ

Toffoli Gate, c2not

B

A

C

1– |��〉AB
AB〈��| + |��〉AB

AB〈��|σx
(C)

z-Rotation, Zφ Z e–iσzφ / 2
e

e

i 2

i 2

−















φ

φ

/

/

0

0


























classically. However, it is worth noting that the comparison is not entirely fair: A truly classi-
cal oracle answering parity questions or implementing the black box on the states of classical
bits is useless to a quantum algorithm. To take advantage of such an algorithm, it must be
possible to use superpositions that are not implicitly collapsed. Collapse can happen if 
the oracle makes a measurement or otherwise “remembers” the question that it was asked.

Resource Accounting

When trying to solve a problem using quantum information processing, an important
issue is to determine what physical resources are available and how much of each
resource is needed for the solution. As mentioned before, in classical information, the
primary resources are bits and operations. The number of bits used by an algorithm is its
space requirement; the number of operations used, its time requirement. If parallel com-
putation is available, one can distinguish between the total number of operations (work)
and the number of parallel steps (time).

When quantum information processing is used, the classical resources are still 
relevant for running the computer that controls the quantum system and performs any
preprocessing and postprocessing tasks. The main quantum resources are analogous to
the classical ones: Quantum space is the number of qubits needed, and quantum time,
the number of quantum gates. Because it turns out that reset operations have a thermo-
dynamic cost, one can count irreversible quantum operations separately. This accounting
of the resource requirements of algorithms and of the minimum resources needed to
solve problems forms the foundation of quantum complexity theory. 

As a simple example of resource accounting, consider the algorithm for the parity
problem. No classical computation is required to decide which quantum gates to apply
or to determine the answer from the measurement. The quantum network consists of a
total of 11 quantum gates (including add and meas operations) and one oracle call (the
application of the black box). In the case of oracle problems, one usually counts the
number of oracle calls first, as we have done in discussing the algorithm. The network is
readily parallelized to reduce the time resource to 6 steps. 

Part III: Advantages of Quantum Information

The notion of quantum information as explained in this primer was established in the
1990s. It emerged from research focused on understanding how physics affects our
capabilities to communicate and process information. The recognition that usable types
of information need to be physically realizable was repeatedly emphasized by Rolf
Landauer, who proclaimed that “information is physical” (1991). Beginning in the
1960s, Landauer studied the thermodynamic cost of irreversible operations in computa-
tion (1961). Charles Bennett showed that, by using reversible computation, this cost can
be avoided (1973). Limitations of measurement in quantum mechanics were investigated
early by researchers such as John von Neumann (1932a and 1932b) and later by
Alexander Holevo (1973b) and Carl Helstrom (1976). Holevo introduced the idea of
quantum communication channels and found bounds on their capacity for transmitting
classical information (1973a). Initially, most work focused on determining the physical
limitations placed on classical information processing. The fact that pairs of two-level
systems can have correlations not possible for classical systems was proved by John
Bell (1964). Subsequently, indications that quantum mechanics offers advantages to
information processing came from Stephen Wiesner’s studies of cryptographic applica-
tions in the late 1960s. Wiesner’s work was not recognized, however, until the 1980s,
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when Bennett, Gilles Brassard, Seth Breidbart, and Wiesner introduced (1982) the idea
of quantum cryptography, which can be used to communicate in secret. 

Initially, the term quantum computation was mostly used to refer to classical comput-
ers realized with quantum mechanical systems. In the 1980s, Paul Benioff (1980),
Richard Feynman (1982), and Yuri Manin (1980) introduced the idea of a quantum com-
puter based on quantum information. They noted that the apparent exponential complex-
ity of simulating quantum mechanics on a classical computer might be overcome if one
could use a computer based on quantum mechanics. A formal model of quantum Turing
machines was soon defined by David Deutsch (1985), who later also introduced quan-
tum networks (1989). Deutsch and Richard Jozsa (1992) were the first to introduce a
black-box problem that could be solved deterministically on a quantum computer in
fewer steps than on a classical computer. 

In spite of suggestions that it could lead to large efficiency improvements in simulat-
ing physics, quantum information processing was still largely an academic subject.
Based on work by Ethan Bernstein and Umesh Vazirani (1993) that formalized quantum
complexity theory, Dan Simon (1994) showed that, for black-box problems, quantum
computers can be exponentially more efficient than classical deterministic or probabilis-
tic computers, giving the first indication of a strong advantage for quantum information
processing. It was Shor’s algorithm for factoring large integers (1994 and 1997) that
finally convinced a larger community that quantum information was more than just a
tool for realizing classical computers. This change in attitude was in no small part due to
the fact that the security of commonly used cryptographic protocols is based on the dif-
ficulty of factoring. 

At that point, it was still generally believed that the fragility of quantum states made
it unlikely for reasonably large quantum computers to be realized in practice. But the
discovery by Shor (1995) and Andrew Steane (1996) that quantum error correction was
possible soon changed that view (for an introductory overview, see the article on quan-
tum error correction on page 188). 

Because the usefulness and realizability of quantum information has been recognized,
the science of quantum information processing is a rapidly growing field. As quantum
information becomes increasingly accessible by technology, its usefulness will be more
apparent. The next few sections discuss what we currently know about applications of
quantum information processing. Refer to Michael Nielsen and Isaac Chuang (2001) as
a useful reference text on quantum computation and information with historical notes. 

Quantum Algorithms

Shor’s factoring algorithm, which precipitated much of the current work in quantum
information processing, is based on a quantum realization of the fast Fourier transform. 
The most powerful version of this technique is now represented by the phase estimation
algorithm of Kitaev (1995) as formalized by Richard Cleve et al. (1998). (For an explana-
tion, see the article “From Factoring to Phase Estimation” on page 38.) The best-known
application of quantum factoring is cryptanalysis, where it allows efficiently breaking the
currently used public-key cryptographic codes. Whether there are any constructive applica-
tions of quantum factoring and its generalizations remains to be determined. For users of
public-key cryptography, a crucial question is, “How long can public-key codes based on
factoring continue to be used safely?” To attempt an answer to this question, one can note
that to break a code with a typical key size of 1000 bits requires more than 3000 qubits and
108 quantum gates, which is well out of reach of current technology. However, it is conceiv-
able that a recording of encrypted information transmitted in 2000 can be broken in the next
“few” decades. 
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Shor’s quantum factoring algorithm was not the first with a significant advantage over
classical algorithms. The first proposed quantum algorithms with this property were for sim-
ulating quantum mechanical systems. These algorithms simulate the evolution of a reason-
ably large number of interacting quantum particles—for example, the electrons and nuclei in
a molecule. The algorithms’ outputs are what would be measurable physical quantities of the
system being simulated. The known methods for obtaining these quantities on classical
computers scale exponentially with the number of particles, except in special cases. 

The idea of using quantum computers for simulating quantum physics spurred the
work that eventually led to the quantum factoring algorithm. However, that idea did not
have the broad scientific impact that the quantum factoring algorithm had. One reason
is that, because of its cryptographic applications, factoring is a heavily studied problem
in theoretical computer science and cryptography. Because so many people have tried to
design efficient algorithms for factoring and failed, the general belief that factoring is
hard for classical computers has a lot of credibility. In contrast, a quantum physics sim-
ulation has no simple formulation as an algorithmic problem suitable for study in theo-
retical computer science. Furthermore, many researchers still believe that the physically
relevant questions can be answered with efficient classical algorithms, requiring only
more cleverness on the part of algorithm designers. Another reason for the lack of
impact is that many of the fundamental physical quantities of interest are not known to
be efficiently accessible even on quantum computers. For example, one of the first
questions about a physical system with a given Hamiltonian (energy observable) is,
“What is the ground-state energy?” It is known that the ability to efficiently answer this
question for physically reasonable Hamiltonians leads to efficient algorithms for hard
problems, such as the traveling salesman or the scheduling problems. In spite of occa-
sional claims to the contrary, an efficient quantum solution to these problems is widely
considered unlikely. 

Most quantum algorithms for physics simulations are based on a direct emulation of
a quantum mechanical system’s evolution. The focus of the original proposals by
Feynman and others was on how to implement the emulation using a suitable formula-
tion of general-purpose quantum computers. After such computers were formalized by
Deutsch, the implementation of the emulation was generalized and refined by Seth
Lloyd (1996), Wiesner (1996), and Christof Zalka (1998). The ability to emulate the
evolution of quantum systems is actually widely used by classical Monte Carlo algo-
rithms for simulating physics. In those algorithms, state amplitudes are, in effect, repre-
sented by expectations of random variables that are computed during the simulation. As
in the case of quantum algorithms for physics emulation, Monte Carlo algorithms effi-
ciently evolve the representation of the quantum system. The inefficiency of the classical
algorithm arises only in determining a physical quantity of interest. In the case of Monte
Carlo algorithms, the measurement of a physical quantity suffers from the so-called sign
problem, often resulting in exponentially large, random errors that can be reduced only
by repeating the computation exponentially many times. In contrast, the quantum algo-
rithms for emulation can determine many (but not all) of the interesting physical quanti-
ties with polynomially bounded statistical errors. How to efficiently implement measure-
ments of these quantities has been the topic of more recent work in this area, much of
which is based on variants of the phase-estimation algorithm (Terhal and DiVincenzo
2000, Knill and Laflamme 1998, Abrams and Lloyd 1999, Ortiz et al. 2001,
Miquel et al. 2002). 

Although several researchers have suggested that there are interesting quantum physics
simulations that can be implemented with well below 100 qubits, one of the interesting
problems in this area of research is to come up with a specific simulation algorithm using
small numbers of qubits and quantum gates, an algorithm that computes an interesting
physical quantity not easily obtainable using available classical computers. 
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Another notable algorithm for quantum computers, unstructured quantum search, was
described by Lov Grover (1996). Given is a black box that computes a binary function f
on inputs x with 0 ≤ x < N. The function f has the property that there is a unique input a
for which f(a) = 1. The standard quantum version of this black box implements the trans-
formation f̂ |x〉|b〉 = |x〉|b ⊕ f(x)〉, where b is a bit and b ⊕ f(x) is computed modulo 2.
Unstructured quantum search finds a quadratically faster, that is, in time of order N1/2,
than the best classical black-box search, which requires time of order N. The context for
this algorithm is the famous P ≠ NP conjecture, which is captured by the following 
algorithmic problem: Given is a classical circuit C that computes an output. Is there an
input to the circuit for which the circuit’s output is �? Such an input is called a satisfying
input or assignment. For any given input, it is easy to check the output, but an efficient
algorithm that finds a satisfying input is conjectured to be impossible. This is the P ≠ NP
conjecture. Generalizations of Grover’s search algorithm—amplitude amplification
(Brassard et al. 1998)—allow finding satisfying inputs faster than naive, classical search
does, which tries every possible input in some, possibly random, order. It is worth noting,
however, that if sufficient classical parallelism is available, quantum search loses many 
of its advantages. 

The three algorithms just described capture essentially all the known algorithmic
advantages of quantum computers. Almost all algorithms that have been described are
applications of phase estimation or of amplitude amplification. These algorithms well
justify developing special-purpose quantum information-processing technology. Will
general-purpose quantum computers be useful? More specifically, what other algorith-
mic advantages do quantum computers have? 

Quantum Communication

Quantum communication is an area in which quantum information has proven (rather
than conjectured) advantages. The best-known application is quantum cryptography,
whereby two parties, Alice and Bob, can generate a secret key using a quantum communi-
cation channel (for example, photons transmitted in optical fiber) and an authenticated
classical channel (for example, a telephone line). Any attempt at learning the key by eaves-
dropping is detected. A quantum protocol for generating a secret key is called a quantum-
key-exchange protocol. There are no equally secure means for generating a secret key by
using only classical deterministic channels. Few quantum operations are needed to imple-
ment quantum key exchange, and as a result, there are working prototype systems (Hughes
et al. 2000, Townsend 1998, Ribordy et al. 2001). To overcome the distance limitations
(tens of kilometers) of current technology requires the use of quantum error correction and
hence more demanding quantum technology. 

Quantum key exchange is one of an increasing number of multiparty problems that can
be solved more efficiently with quantum information. The area of research concerned with
how several parties at different locations can solve problems while minimizing communi-
cation resources is called communication complexity. For quantum communication com-
plexity (Cleve and Burhman 1997), the communication resources include either shared
entangled qubits or a means for transmitting quantum bits. A seminal paper by Howard
Burhman, Cleve, and Wim van Dam (2000) shows how the nonclassical correlations 
present in maximally entangled states lead to protocols based on such states that are more
efficient than any classical deterministic or probabilistic protocol achieving the same goal.
Ran Raz (1999) showed that there is an exponential improvement in communication
resources for a problem in which Alice and Bob have to answer a question about the 
relationship between a vector known to Alice and a matrix known to Bob. Although this
problem is artificial, it suggests that there are potentially useful advantages to be gained
from quantum information in this setting. 
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Quantum Control

According to Moore’s law of semiconductor technology, the size of transistors is
decreasing exponentially, by a factor of about .8 every year. If this trend continues, then
over the next few decades, devices will inevitably be built whose behavior will be prima-
rily quantum mechanical. For the purpose of classical computation, the goal is to remove
the quantum behavior and stabilize classical information. But quantum information offers
an alternative: It is possible to directly use quantum effects to advantage. Whether or not
this alternative is useful (and we believe it is), the ideas of quantum information can be
used to systematically understand and control quantum mechanical systems. 

The decreasing size of semiconductor components is a strong motivation to strive for
better understanding the behavior of condensed-matter quantum mechanical systems.
But there is no reason to wait for Moore’s law: There are a rapidly increasing number of
experimental systems in which quantum mechanical effects are being used and investi-
gated. Examples include many optical devices (lasers, microwave cavities, entangled
photon pairs), nuclear magnetic resonance with molecules or in solid state, trapped ion
or atom systems, Rydberg atoms, superconducting devices (Josephson junctions and
SQUIDs), and spintronics (electron spins in semiconductor devices). Many of these sys-
tems are being considered as candidates for realizing quantum information processing.
Yet, regardless of the future of quantum information processing, there is ample motiva-
tion for studying these systems. 

Outlook

The science of quantum information processing is promising a significant impact on
how we process information, solve algorithmic problems, engineer nanoscale devices,
and model fundamental physics. It is already changing the way we understand and con-
trol matter at the atomic scale, making the quantum world more familiar, accessible, and
understandable. Whether or not we do most of our everyday computations by using the
classical model, it is likely that the physical devices that support these computations will
exploit quantum mechanics and integrate the ideas and tools that have been developed
for quantum information processing. �
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Glossary

Algorithm. A set of instructions to be executed by a computing device. What
instructions are available depends on the computing device. Typically, instructions 
include commands for manipulating the contents of memory and means for repeating
blocks of instructions indefinitely or until a desired condition is met.

Amplitude. A quantum system with a chosen orthonormal basis of “logical” states |i〉
can be in any superposition Σiαi |i〉 of these states, where Σi|αi|

2 = 1. In such a 
superposition, the complex  numbers αι are called the amplitudes. Note that the 
amplitudes depend on the chosen basis.

Ancillas. Helper systems used to assist in a computation involving other 
information systems.

Bell basis. For two qubits A and B, the Bell basis consists of the four states 
1/√2(|��〉AB ± |��〉AB) and 1/√2(|��〉AB ± |��〉AB).

Bell states. The members of the Bell basis. 
Bit. The basic unit of deterministic information. It is a system that can be in one of two
possible states, � and �.
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Bit sequence. A way of combining bits into a larger system whose constituent bits are 
in a specific order. 

Bit string. A sequence of �s and �s that represents a state of a bit sequence. Bit strings 
are the words of a binary alphabet. 

Black box. A computational operation whose implementation is unknown. Typically, a
black box implements one of a restricted set of operations, and the goal is to determine
which of these operations it implements by using it with different inputs. Each use of the
black box is called a “query.” The smallest number of queries required to determine the
operation is called the “query complexity” of the restricted set. Determining the query
complexity of sets of operations is an important area of computational complexity. 
Bloch sphere. The set of pure states of a qubit represented as points on the surface of 

the unit sphere in three dimensions.
Bra. A state expression of the form 〈ψ| considered to be the conjugate transpose of the 

ket expression |ψ〉.
Bra-ket notation. A way of denoting states and operators of quantum systems with kets 
(for example, |ψ〉) and bras (for example, 〈φ|).
Circuit. A combination of gates applied to information units in a prescribed order. 

To draw circuits, one often uses a convention for connecting and depicting gates. 
See also “network.”

Circuit complexity. The circuit complexity of an operation on a fixed number of 
information units is the smallest number of gates required to implement 
the operation. 

Classical information. The type of information based on bits and bit strings and more 
generally on words formed from finite alphabets. This is the information used for 
communication between people. Classical information can refer to deterministic or 
probabilistic information, depending on the context. 

Computation. The execution of the instructions provided by an algorithm. 
Computational states. See “logical states.”
Computer. A device that processes information.
Density matrix or operator. A representation of pure and mixed states without 

redundancy. For a pure state |ψ〉, the corresponding density operator is |ψ〉〈ψ|. 
A general density operator is a probabilistic combination Σiλi|ψi〉〈ψi|, with Σiλi = 1. 

Deterministic information. The type of information that is based on bits and bit strings.
Deterministic information is classical, but it explicitly excludes probabilistic 
information. 

Distinguishable states. In quantum mechanics, two states are considered 
distinguishable if they are orthogonal. In this case, a measurement exists that is 
guaranteed to determine which of the two states a system is in. 

Efficient computation. A computation is efficient if it requires, at most, polynomially 
many resources as a function of input size. For example, if the computation returns 
the value f(x) on input x, where x is a bit string, then it is efficient if there exists a 
power k such that the number of computational steps used to obtain f(x) is bounded 
by |x|2, where |x| is the length (number of bits) of x.

Entanglement. A nonclassical correlation between two quantum systems most strongly 
exhibited by the maximally entangled states, such as the Bell states for two qubits, and
considered to be absent in mixtures of product states (which are called separable 
states). Often, states that are not separable are considered to be entangled. However,
nearly separable states do not exhibit all the features of maximally entangled states. 
As a result, studies of different types of entanglement are an important component 
of quantum information theory. 

Gate. An operation applied to information for the purpose of information processing.
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Global phase. Two quantum states are indistinguishable if they differ only by a global 
phase. That is, |ψ〉 and eiφ|ψ〉 are in essence the same state. The global phase 
difference is the factor eiφ. The equivalence of the two states is apparent from the fact
that their density matrices are the same. 

Hilbert space. An n-dimensional Hilbert space consists of all complex n-dimensional 
vectors. A defining operation in a Hilbert space is the inner product. If the vectors are
thought of as column vectors, then the inner product 〈x, y〉 of x and y is obtained by 
forming the conjugate transpose x† of x and calculating 〈x, y〉 = x†y. The inner 
product induces the usual squared norm |x|2 = 〈x, x〉. 

Information. Something that can be recorded, communicated, and computed with. 
Information is fungible; that is, its meaning can be identified regardless of the 
particulars of the physical realization. Thus, information in one realization (such as 
ink on a sheet of paper) can be easily transferred to another (for example, spoken 
words). Types of information include deterministic, probabilistic, and quantum 
information. Each type is characterized by information units, which are abstract 
systems whose states represent the simplest information of each type. The 
information units define the “natural” representation of the information. For 
deterministic information, the information unit is the bit, whose states are symbolized
by � and �. Information units can be put together to form larger systems and can be 
processed with basic operations acting on few of them at a time. 

Inner product. The defining operation of a Hilbert space. In a finite dimensional 
Hilbert space with a chosen orthonormal basis {ei : 1 ≤ i ≤ n}, the inner product of 
two vectors x = Σixiei and y = Σiyiei is given by Σixiyi. In the standard column 
representation of the two vectors, this is the number obtained by computing the 
product of the conjugate transpose of x with y. For real vectors, that product agrees 
with the usual “dot” product. The inner product of x and y is often written in the form
〈x, y〉. Pure quantum states are unit vectors in a Hilbert space. If |φ〉 and |ψ〉 are two 
quantum states expressed in the ket-bra notation, their inner product is given by 
(|φ〉)†〈ψ| = 〈φ|ψ〉. 

Ket. A state expression of the form |ψ〉 representing a quantum state. Usually, |ψ〉 is 
thought of as a superposition of members of a logical state basis |i〉. One way to think
about the notation is to consider the two symbols | and 〉 as delimiters denoting a 
quantum system and ψ as a symbol representing a state in a standard Hilbert space. 
The combination |ψ〉 is the state of the quantum system associated with ψ in the 
standard Hilbert space via a fixed isomorphism. In other words, one can think of 
ψ ↔ |ψ〉 as an identification of the quantum system’s state space with the standard 
Hilbert space. 

Linear extension of an operator. The unique linear operator that implements a map 
defined on a basis. Typically, we define an operator U on a quantum system only 
on the logical states U : |i〉 → |ψi〉. The linear extension is defined by U(Σiαi|i〉) = Σiαi|ψi〉. 

Logical states. For quantum systems used in information processing, the logical states 
are a fixed orthonormal basis of pure states. By convention, the logical basis for 
qubits consists of |�〉 and |�〉. For larger dimensional quantum systems, the logical 
basis is often indexed by integers, |0〉, |1〉, |2〉, and so on. The logical basis is often 
called the computational basis, or sometimes, the classical basis. 

Measurement. The process used to extract classical information from a quantum 
system. A general projective measurement is defined by a set of projectors Pi,
satisfying ΣiPi = 11  and PiPj = δijPi. Given the quantum state |ψ〉, the outcome of a 
measurement with the set {Pi}i, is one of the classical indices i associated with a 
projector Pi. The index i is the measurement outcome. The probability of outcome i
is pi = |Pi|ψi〉|

2, and given outcome i, the quantum state “collapses” to Pi|ψi〉/√pi. 
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Mixture. A probabilistic combination of the pure states of a quantum system. Mixtures 
can be represented without redundancy with density operators. Thus, a mixture is of 
the form Σiλi|ψi〉〈ψi|, with λi ≥ 0 and Σiλi = 1 being the probabilities of the states 
|ψi〉. This expression for mixtures defines the set of density operators, which can 
also be characterized as the set of operators ρ satisfying tr(ρ) = 1 and for all 
|ψ〉, 〈ψ|ρ|ψ〉 ≥ 0 (“positive semidefinite operator”). 

Network. In the context of information processing, a network is a sequence of gates 
applied to specified information units. Networks can be visualized as displaying 
horizontal lines that denote the timeline of an information unit. The gates are 
represented by graphical elements that intercept the lines at specific points. A 
realization of the network requires applying the gates to the information units in 
the specified order (left to right). 

Operator. A function that transforms the states of a system. Operators may be restricted
depending on the system’s properties. For example, in talking about operators acting 
on quantum systems, one always assumes that they are linear. 

Oracle. An information processing operation that can be applied. A use of the oracle is 
called a query. In the oracle model of computation, a standard model is extended to 
include the ability to query an oracle. Each oracle query is assumed to take one time 
unit. Queries can reduce the resources required for solving problems. Usually, the oracle 
implements a function or solves a problem not efficiently implementable by the model 
without the oracle. Oracle models are used to compare the power of two models of 
computation when the oracle can be defined for both models. In 1994, for example,
Dan Simon showed that quantum computers with a specific oracle O could efficiently 
solve a problem that had no efficient solution on classical computers with access to the 
classical version of O. At the time, this result was considered the strongest evidence for 
an exponential gap in power between classical and quantum computers. 

Overlap. The inner product between two quantum states.
Pauli operators. The Hermitian matrices σx, σy, and σz acting on qubits, which are 

two-level quantum systems. They are defined in Equation (12). It is often convenient 
to consider the identity operator to be included in the set of Pauli operators. 

Polynomial resources. To say that an algorithm computing the function f(x), where x is 
a bit string, uses polynomial resources (in other words, is efficient) means that the 
number of steps required to compute f(x) is bounded by |x|k for some fixed k. Here,
|x| denotes the length of the bit string x. 

Probabilistic bit. The basic unit of probabilistic information whose state space consists 
of all probability distributions over the two states of a bit. The states can be thought 
of as describing the outcome of a biased coin flip before the coin is flipped. 

Probabilistic information. The type of information obtained by extending the state 
spaces of deterministic information to allow arbitrary probability distributions over 
the deterministic states. This is the main type of classical information with which 
quantum information is compared. 

Probability amplitude. The squared norm of an amplitude with respect to a chosen 
orthonormal basis {|i〉}. Thus, the probability amplitude is the probability with which 
the state |i〉 is measured in a complete measurement that uses this basis. 

Product state. For two quantum systems A and B, product states are of the form 
|ψ〉Α|φ〉Β. Most states are not of this form. 

Program. An algorithm expressed in a language that can be understood by a particular 
type of computer. 

Projection operator. A linear operator P on a Hilbert space that satisfies P2 = P†P = P. 
The projection onto a subspace V with orthogonal complement W is defined as 
follows: If x ∈ V and y ∈ W, then P(x + y) = x. 
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Pseudocode. A semiformal computer language intended to be executed by a standard 
random-access machine, which is a machine model with a central processing unit 
and access to a numerically indexed unbounded memory. This machine model is 
representative of the typical one-processor computer. Pseudocode is similar to 
programming languages such as BASIC, Pascal, or C but does not have specialized 
instructions for human interfaces, file management, or other “external” devices. Its 
main use is to describe algorithms and enable machine-independent analysis of the 
algorithms’ resource usage. 

Pure state. A state of a quantum system that corresponds to a unit vector in the Hilbert 
space used to represent the system’s state space. In the ket notation, pure states are 
written in the form |ψ〉 = Σiαi|i〉, where the |i〉 form a logical basis and Σi|αi|

2 = 1. 
Quantum information. The type of information obtained when the state space of 

deterministic information is extended by normalized superpositions of deterministic 
states. Formally, each deterministic state is identified with one of an orthonormal basis 
vector in a Hilbert space, and normalized superpositions are unit-length vectors 
expressible as complex linear sums of the chosen basis vectors. It is convenient to 
extend this state space further by permitting probability distributions over the quantum 
states (see the entry for “mixtures”). This extension is still called quantum information. 

Qubit. The basic unit of quantum information. It is the quantum extension of the 
deterministic bit, which implies that its state space consists of the unit-length vectors 
in a two-dimensional Hilbert space. 

Readout. A method for obtaining human-readable information from the state of a 
computer. For quantum computers, readout refers to a measurement process used to 
obtain classical information about a quantum system. 

Reversible gate. A gate whose action can be undone by a sequence of gates. 
Separable state. A mixture of product states. 
States. The set of states for a system characterizes the system’s behavior and 

possible configurations. 
Subspace. For a Hilbert space, a subspace is a linearly closed subset of the vector space.

The term can be used more generally for a system Q of any information type:
A subspace of Q or, more specifically, of the state space of Q is a subset of the state 
space that preserves the properties of the information type represented by Q. 

Superposition principle. One of the defining postulates of quantum mechanics 
according to which if states |1〉, |2〉, . . . are distinguishable, then Σiαi|i〉 with 
Σi|αi|

2 = 1 is a valid quantum state. Such a linear combination is called a normalized 
superposition of the states |i〉. 

System. An entity that can be in any of a specified number of states. An example is 
a desktop computer whose states are determined by the contents of its various 
memories and disks. Another example is a qubit, which can be thought of as a 
particle whose state space is identified with complex, two-dimensional, length-one 
vectors. Here, a system is always associated with a type of information that 
determines the properties of the state space. For example, for quantum information,
the state space is a Hilbert space. For deterministic information, it is a finite set 
called an alphabet. 

Unitary operator. A linear operator U on a Hilbert space that preserves the inner 
product. That is, 〈Ux, Uy〉 = 〈x, y〉. If U is given in matrix form, then this expression 
is equivalent to U†U = 11. 

Universal set of gates. A set of gates that satisfies the requirement that every 
allowed operation on information units can be implemented by a network of these 
gates. For quantum information, it means a set of gates that can be used to implement
every unitary operator. More generally, a set of gates is considered universal if, for 
every operator U, there are implementable operators V arbitrarily close to U.
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